DS n°7: Anneaux, matrices et systèmes, polynômes

Durée : 4h. Calculatrices non autorisées

Le soin et la clarté de la rédaction pourront faire varier la note de ± 1 point. Il n'est pas attendu que vous arrivez au bout du sujet (le barème dépassera 100 points). Faites primer la qualité sur la quantité.

Exercice 1: un anneau matriciel

Soit $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ deux matrices de $\mathcal{M}_2(\mathbb{R})$. Pour tous $a, b \in \mathbb{R}^2$, on pose

$$M(a,b) = aI + bJ$$

$$E = \{ M(a, b) \mid a, b \in \mathbb{R} \}$$

- 1) Exprimer J^2 en fonction de J et I.
- 2) Étant donné $a, b, c, d \in \mathbb{R}$, déterminer un couple $(\alpha, \beta) \in \mathbb{R}^2$ tel que $M(a, b)M(c, d) = M(\alpha, \beta)$.
- 3) Montrer que $(E, +, \cdot)$ est un anneau commutatif.
- 4) Résoudre les équations suivantes d'inconnue $X \in E$:

(i)
$$JX = I$$
 (ii) $X^2 = I$ (iii) $(X + J)^n = J^{\top}$ avec $n \in \mathbb{N}$

- 5) Soit $a,b \in \mathbb{R}$. Montrer que M(a,b) est inversible dans E si et seulement si le système suivant (d'inconnues $x,y \in \mathbb{R}$) admet une solution : $\begin{cases} ax by & = 1 \\ bx + (2b + a)y & = 0 \end{cases}$
- 6) En déduire les éléments inversibles de E. On pourra distinguer les cas a+b=0 et $a+b\neq 0$.

Exercice 2 : congruence polynômiale

Soit $A, B, P \in \mathbb{K}[X]$. On définit la relation "congru modulo P" sur $\mathbb{K}[X]$ par :

$$A \equiv B \quad [P] \iff P \mid A - B$$

- 1) Montrer que la relation "congru modulo P" est une relation d'équivalence sur $\mathbb{K}[X]$.
- **2)** Montrer que si $A \equiv B$ [P], alors pour tout $k \in \mathbb{N}$, et $A^k \equiv B^k$ [P].
- 3) Soit $Q \in \mathbb{K}[X]$ tel que $P \wedge Q = 1$. Montrer que $A \equiv B \quad [P]$ si et seulement si $AQ \equiv BQ \quad [P]$.

Les questions 3 et 4 qui suivent sont indépendantes

- 4) a) Montrer que $X^4 \equiv 1 \quad [X^3 + X^2 + X + 1].$
 - b) En déduire que pour tous entiers naturels m, n, p, q, le polynôme $X^3 + X^2 + X + 1$ divise le polynôme $X^{4m+3} + X^{4n+2} + X^{4p+1} + X^{4q}$.
- 5) a) Soit $A \in \mathbb{K}[X]$ tel que $A \wedge P = 1$. Montrer qu'il existe $C \in \mathbb{K}[X]$ tel que $AC \equiv 1$ [P].
 - b) Dans la suite du problème, on pose $A=X^4+1$ et $B=X^3+1$. Déterminer le PGCD de A et B ainsi qu'un couple de coefficients de Bézout associé.
 - c) Résoudre dans $\mathbb{K}[X]$ l'équation $AR \equiv 1 \quad [B]$ d'inconnue $R \in \mathbb{K}[X]$.

Exercice 3: Calcul matriciel

On considère dans tout cet exercice les matrices $A = \begin{pmatrix} -3 & -1 & -3 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix}$

- 1) Calculer explicitement les matrices A^2 et A^3 .
- 2) Déterminer trois entiers a, b, c tels que $A^3 = aA^2 + bA + cI_3$ (on écrira explicitement la résolution du système nécessaire au calcul de a, b, c).
- 3) En utilisant la question précédente, déterminer si A est inversible, et le cas échéant, exprimer son inverse A^{-1} en fonction de A (on ne demande pas un calcul explicite).
- 4) On pose $Q = X^3 aX^2 bX c$. Déterminer les racines de Q.
- 5) Montrer que P est inversible et calculer son inverse P^{-1} .
- 6) Calculer la matrice $P^{-1}AP$, qu'on notera D par la suite (vérifier que D est diagonale). Quel lien peut-on faire avec le polynôme Q de la question 4?
- 7) Donner l'expression de D^n , puis montrer que $\forall n \in \mathbb{N}$ $A^n = PD^nP^{-1}$ (on ne demande pas de calculer explicitement A^n).
- 8) On définit trois suites (u_n) , (v_n) et (w_n) par les conditions suivantes : $u_0 = v_0 = 1$, $w_0 = 0$ et

$$\forall n \in \mathbb{N} \quad u_{n+1} = -3u_n - v_n - 3w_n, \quad v_{n+1} = 2u_n + 3v_n \quad \text{et} \quad w_{n+2} = 2u_n + v_n + 2w_n$$

On notera de plus
$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$
.

- a) Établir une relation entre X_{n+1} et X_n faisant intervenir la matrice A.
- b) En déduire une relation entre X_n et X_0 qu'on démontrera rigoureusement.
- c) Calculer explicitement u_n , v_n et w_n en fonction de n.

Exercice 3 : Équation arithmétique de polynômes

On veut déterminer les polynômes $P \in \mathbb{R}[X]$ tels que le polynôme $Q = P(2X) - 2P(X)^2 + 1$ soit divisible par X^3 .

- 1) Montrer que $P \in \mathbb{R}[X]$ est solution si et seulement si $\forall k \in [0,2]$ $Q^{(k)}(0) = 0$.
- 2) Déterminer pour tout $k \in \mathbb{N}^*$ $Q^{(k)}(X)$ puis $Q^{(k)}(0)$, en fonction des dérivées de P. On utilisera la formule de Leibniz.
- 3) On pose a = P(0), b = P'(0) et c = P''(0). Déterminer les valeurs possibles, lorsque P est solution, de a, b, c.
- 4) En utilisant la formule de Taylor, conclure.

Pourquoi les mathématiciens ne font jamais de blague ? Car pour eux, le second degré, c'est discriminant!